acosh() 函数用于计算反双曲余弦值,返回参数的反双曲余弦值。
acosh() 函数返回一个数的反双曲余弦值(inverse hyperbolic cosine)。参数必须大于等于 1,返回值为非负实数。
acosh(float $num): float
| 参数 | 类型 | 描述 | 必需 |
|---|---|---|---|
$num |
float | 要计算反双曲余弦值的数字,必须大于等于 1 | 是 |
返回参数 $num 的反双曲余弦值,以浮点数形式返回。返回值满足:cosh(acosh(x)) = x。
计算不同数字的反双曲余弦值:
<?php
// 计算反双曲余弦值
echo "acosh(1) = " . acosh(1) . "\n"; // 0
echo "acosh(1.5) = " . acosh(1.5) . "\n"; // 约 0.96242365011921
echo "acosh(2) = " . acosh(2) . "\n"; // 约 1.3169578969248
echo "acosh(3) = " . acosh(3) . "\n"; // 约 1.7627471740391
echo "acosh(5) = " . acosh(5) . "\n"; // 约 2.2924316695612
echo "acosh(10) = " . acosh(10) . "\n"; // 约 2.9932228461264
// 验证 cosh(acosh(x)) = x
$x = 2.5;
$acosh_x = acosh($x);
$cosh_acosh_x = cosh($acosh_x);
echo "x = $x\n";
echo "acosh(x) = $acosh_x\n";
echo "cosh(acosh(x)) = $cosh_acosh_x\n";
echo "验证: " . (abs($cosh_acosh_x - $x) < 0.000001 ? "通过" : "失败") . "\n";
// 处理大数
echo "acosh(100) = " . acosh(100) . "\n"; // 约 5.2982923656105
echo "acosh(1000) = " . acosh(1000) . "\n"; // 约 7.6009022095412
?>
验证双曲函数和反双曲函数的关系:
<?php
// 双曲函数关系验证
class HyperbolicFunctions {
// 计算反双曲余弦的自然对数表示
public static function acoshByFormula($x) {
if ($x < 1) {
throw new InvalidArgumentException("x 必须 >= 1");
}
return log($x + sqrt($x * $x - 1));
}
// 验证 acosh(x) = ln(x + sqrt(x² - 1))
public static function verifyAcoshFormula($x) {
$acosh_value = acosh($x);
$formula_value = self::acoshByFormula($x);
$difference = abs($acosh_value - $formula_value);
return [
'acosh' => $acosh_value,
'formula' => $formula_value,
'difference' => $difference,
'verified' => $difference < 1e-10
];
}
// 验证双曲函数性质
public static function verifyProperties($x) {
if ($x < 1) return null;
$y = acosh($x);
// 性质1: cosh(acosh(x)) = x
$property1 = cosh($y);
// 性质2: acosh(cosh(y)) = y (对于 y >= 0)
$property2 = acosh(cosh($y));
// 性质3: 导数公式验证
$derivative = 1 / sqrt($x * $x - 1);
return [
'x' => $x,
'y' => $y,
'cosh(y)' => cosh($y),
'property1_error' => abs($property1 - $x),
'acosh(cosh(y))' => $property2,
'property2_error' => abs($property2 - $y),
'derivative' => $derivative
];
}
}
// 测试
echo "公式验证:\n";
$testValues = [1, 1.5, 2, 3, 5, 10];
foreach ($testValues as $x) {
$result = HyperbolicFunctions::verifyAcoshFormula($x);
echo "x = $x: acosh = " . round($result['acosh'], 6) .
", 公式 = " . round($result['formula'], 6) .
", 差异 = " . $result['difference'] .
", 验证" . ($result['verified'] ? "通过" : "失败") . "\n";
}
echo "\n双曲函数性质验证:\n";
foreach ([1.5, 2, 3] as $x) {
$props = HyperbolicFunctions::verifyProperties($x);
if ($props) {
echo "x = $x, y = acosh(x) = " . round($props['y'], 4) . "\n";
echo " 验证 cosh(y) = x: cosh(" . round($props['y'], 4) . ") = " .
round($props['cosh(y)'], 4) . " (误差: " . round($props['property1_error'], 10) . ")\n";
echo " 验证 acosh(cosh(y)) = y: " . round($props['acosh(cosh(y))'], 4) .
" (误差: " . round($props['property2_error'], 10) . ")\n";
echo " 导数: d(acosh(x))/dx = 1/√(x²-1) = " . round($props['derivative'], 4) . "\n\n";
}
}
?>
在物理和工程问题中应用acosh()函数:
<?php
// 悬链线计算 (Catenary curve)
class Catenary {
private $a; // 参数a
public function __construct($a) {
if ($a <= 0) {
throw new InvalidArgumentException("参数a必须大于0");
}
$this->a = $a;
}
// 计算悬链线方程 y = a * cosh(x/a)
public function getY($x) {
return $this->a * cosh($x / $this->a);
}
// 计算给定y值对应的x值(使用反双曲函数)
public function getXFromY($y) {
if ($y < $this->a) {
throw new InvalidArgumentException("y必须大于等于a");
}
return $this->a * acosh($y / $this->a);
}
// 计算悬链线弧长
public function getArcLength($x1, $x2) {
return $this->a * (sinh($x2 / $this->a) - sinh($x1 / $this->a));
}
}
// 使用示例
try {
$catenary = new Catenary(2);
echo "悬链线参数 a = 2\n";
echo "方程: y = 2 * cosh(x/2)\n\n";
// 计算一些点的坐标
$xValues = [-3, -2, -1, 0, 1, 2, 3];
echo "悬链线上点的坐标:\n";
foreach ($xValues as $x) {
$y = $catenary->getY($x);
echo "x = " . str_pad($x, 4) . " => y = " . round($y, 4) . "\n";
}
echo "\n从y值反求x值:\n";
$yToFind = 3.7622; // cosh(1) ≈ 1.54308, 2*1.54308=3.08616
if ($yToFind >= 2) {
$xCalculated = $catenary->getXFromY($yToFind);
echo "y = $yToFind => x = " . round($xCalculated, 4) . "\n";
echo "验证: y = " . round($catenary->getY($xCalculated), 4) . "\n";
}
// 计算两点间弧长
$x1 = -2;
$x2 = 2;
$arcLength = $catenary->getArcLength($x1, $x2);
echo "\n从 x=$x1 到 x=$x2 的弧长: " . round($arcLength, 4) . "\n";
} catch (Exception $e) {
echo "错误: " . $e->getMessage() . "\n";
}
// 相对论中的速度叠加公式(使用双曲函数)
echo "\n相对论速度叠加:\n";
function relativisticVelocityAddition($v1, $v2, $c = 1) {
// 使用双曲函数: v = c * tanh(atanh(v1/c) + atanh(v2/c))
$rapidity1 = atanh($v1 / $c);
$rapidity2 = atanh($v2 / $c);
$combinedRapidity = $rapidity1 + $rapidity2;
return $c * tanh($combinedRapidity);
}
$v1 = 0.6; // 0.6c
$v2 = 0.8; // 0.8c
$result = relativisticVelocityAddition($v1, $v2);
echo "速度1: {$v1}c, 速度2: {$v2}c, 相对论叠加: " . round($result, 4) . "c\n";
echo "经典力学叠加: " . round($v1 + $v2, 4) . "c (不正确)\n";
?>
处理acosh()函数可能出现的错误和边界情况:
<?php
// 安全的acosh函数,包含错误处理
class SafeHyperbolic {
// 安全的acosh计算
public static function safeAcosh($x) {
// 检查输入类型
if (!is_numeric($x)) {
throw new InvalidArgumentException("参数必须是数字");
}
// 处理浮点精度误差
$epsilon = 1e-15;
// 检查边界条件
if ($x < 1) {
// 如果非常接近1(由于浮点误差)
if (abs($x - 1) < $epsilon) {
return 0.0; // acosh(1) = 0
}
throw new RangeException("acosh() 参数必须大于等于 1。输入值: " . $x);
}
// 特殊情况的精确值
if (abs($x - 1) < $epsilon) return 0.0;
// 大数处理(避免数值问题)
if ($x > 1e100) {
// 对于非常大的x,使用近似公式: acosh(x) ≈ ln(2x)
return log(2 * $x);
}
return acosh($x);
}
// 计算双曲余弦并验证
public static function acoshWithVerification($x) {
$result = self::safeAcosh($x);
// 验证结果
$verification = cosh($result);
$error = abs($verification - $x);
return [
'input' => $x,
'acosh' => $result,
'verification' => $verification,
'error' => $error,
'verified' => $error < 1e-10
];
}
// 批量计算
public static function batchAcosh(array $values) {
$results = [];
foreach ($values as $index => $value) {
try {
$results[$index] = [
'value' => $value,
'result' => self::safeAcosh($value),
'status' => 'success'
];
} catch (Exception $e) {
$results[$index] = [
'value' => $value,
'result' => null,
'status' => 'error',
'message' => $e->getMessage()
];
}
}
return $results;
}
}
// 测试边界条件和错误处理
echo "测试边界条件:\n";
$testCases = [
1, // 正常边界
0.9999999999999999, // 略小于1
1.0000000000000001, // 略大于1
0, // 小于1
-1, // 负数
1000, // 大数
1e150, // 非常大的数
"1.5", // 字符串数字
"abc", // 无效字符串
NAN, // NAN
INF // 无穷大
];
foreach ($testCases as $testValue) {
echo "输入: ";
if (is_nan($testValue)) {
echo "NAN";
} elseif (is_infinite($testValue)) {
echo $testValue > 0 ? "INF" : "-INF";
} else {
echo $testValue;
}
echo " => ";
try {
$result = SafeHyperbolic::safeAcosh($testValue);
if (is_nan($result)) {
echo "NAN";
} elseif (is_infinite($result)) {
echo $result > 0 ? "INF" : "-INF";
} else {
echo round($result, 6);
// 验证
if (is_numeric($testValue) && $testValue >= 1) {
$verification = cosh($result);
echo " (验证: cosh(acosh(x)) = " . round($verification, 6) . ")";
}
}
} catch (Exception $e) {
echo "错误: " . $e->getMessage();
}
echo "\n";
}
// 批量计算示例
echo "\n批量计算示例:\n";
$values = [1, 2, 3, 0.5, 5, "2.5", 10];
$batchResults = SafeHyperbolic::batchAcosh($values);
foreach ($batchResults as $index => $result) {
echo "值[" . $index . "] = " . $result['value'] . ": ";
if ($result['status'] === 'success') {
echo round($result['result'], 4);
} else {
echo $result['message'];
}
echo "\n";
}
?>
在科学计算和数据分析中使用acosh()函数:
<?php
// 统计中的双曲变换
class StatisticalTransforms {
// Fisher z变换(用于相关系数的变换)
public static function fisherZTransform($r) {
if ($r <= -1 || $r >= 1) {
throw new InvalidArgumentException("相关系数必须在(-1, 1)范围内");
}
return 0.5 * log((1 + $r) / (1 - $r));
}
// 反Fisher z变换
public static function inverseFisherZTransform($z) {
$e2z = exp(2 * $z);
return ($e2z - 1) / ($e2z + 1);
}
// 使用双曲函数计算几何平均距离
public static function hyperbolicMean($values) {
if (empty($values)) {
throw new InvalidArgumentException("数组不能为空");
}
$n = count($values);
$sum = 0;
foreach ($values as $value) {
if ($value < 1) {
throw new InvalidArgumentException("所有值必须大于等于1");
}
$sum += acosh($value);
}
return cosh($sum / $n);
}
// 计算双曲距离(双曲几何)
public static function hyperbolicDistance($x1, $y1, $x2, $y2) {
// 使用双曲余弦定理
$dx = $x2 - $x1;
$dy = $y2 - $y1;
$coshDist = cosh($dx) * cosh($dy) - sinh($dx) * sinh($dy) * cos(M_PI);
return acosh($coshDist);
}
}
// 使用示例
echo "Fisher Z变换:\n";
$correlations = [0.1, 0.5, 0.8, -0.3];
foreach ($correlations as $r) {
try {
$z = StatisticalTransforms::fisherZTransform($r);
$r_back = StatisticalTransforms::inverseFisherZTransform($z);
echo "r = " . str_pad($r, 4) . " => z = " . round($z, 4) .
" => 反变换 = " . round($r_back, 4) .
" (误差: " . abs($r - $r_back) . ")\n";
} catch (Exception $e) {
echo "r = $r: " . $e->getMessage() . "\n";
}
}
echo "\n双曲几何平均:\n";
$hyperbolicValues = [1.5, 2.0, 3.0, 4.0];
try {
$mean = StatisticalTransforms::hyperbolicMean($hyperbolicValues);
echo "值: " . implode(', ', $hyperbolicValues) . "\n";
echo "双曲几何平均: " . round($mean, 4) . "\n";
// 验证
$individualAcosh = array_map('acosh', $hyperbolicValues);
$avgAcosh = array_sum($individualAcosh) / count($individualAcosh);
$calculatedMean = cosh($avgAcosh);
echo "验证: cosh(平均(acosh(x))) = " . round($calculatedMean, 4) . "\n";
} catch (Exception $e) {
echo "错误: " . $e->getMessage() . "\n";
}
echo "\n双曲几何距离计算:\n";
// 在双曲平面上计算两点距离
$point1 = [0, 0];
$point2 = [1, 1];
$distance = StatisticalTransforms::hyperbolicDistance(
$point1[0], $point1[1],
$point2[0], $point2[1]
);
echo "点1: (" . implode(', ', $point1) . ")\n";
echo "点2: (" . implode(', ', $point2) . ")\n";
echo "双曲距离: " . round($distance, 4) . "\n";
// 数值积分中的双曲替换
echo "\n数值积分示例(使用双曲替换):\n";
function integrateWithHyperbolicSubstitution($a, $b, $n = 1000) {
// 计算 ∫√(x²-1) dx 从 a 到 b
$sum = 0;
$dx = ($b - $a) / $n;
for ($i = 0; $i < $n; $i++) {
$x = $a + ($i + 0.5) * $dx;
if ($x >= 1) {
$sum += sqrt($x * $x - 1);
}
}
return $sum * $dx;
}
// 解析解: ∫√(x²-1) dx = (1/2)[x√(x²-1) - acosh(x)]
function exactIntegral($x) {
if ($x < 1) return 0;
return 0.5 * ($x * sqrt($x * $x - 1) - acosh($x));
}
$a = 1;
$b = 3;
$numerical = integrateWithHyperbolicSubstitution($a, $b);
$exact = exactIntegral($b) - exactIntegral($a);
echo "数值积分 ∫√(x²-1) dx 从 $a 到 $b:\n";
echo "数值结果: " . round($numerical, 6) . "\n";
echo "精确结果: " . round($exact, 6) . "\n";
echo "误差: " . abs($numerical - $exact) . "\n";
?>
对于任意实数 x ≥ 1,反双曲余弦函数 y = acosh(x) 定义为:
y ≥ 0 使得 cosh(y) = x
其中双曲余弦函数定义为:cosh(y) = (eʸ + e⁻ʸ)/2
定义域: [1, +∞)
值域: [0, +∞)
| 场景 | 描述 | 公式/代码 |
|---|---|---|
| 悬链线计算 | 计算悬链线形状和参数 | acosh(y/a) * a |
| 相对论物理 | 速度叠加和快速性计算 | atanh(v/c) 相关 |
| 双曲几何 | 计算双曲空间中的距离 | acosh(cosh(dx)cosh(dy)...) |
| 信号处理 | 双曲滤波器和变换 | acosh(frequency_ratio) |
| 数值分析 | 积分和微分方程求解 | ∫acosh(x)dx |
NANacosh(NAN) 返回 NAN,acosh(INF) 返回 INFcosh()计算双曲余弦值
asinh()计算反双曲正弦值
atanh()计算反双曲正切值
acosh()计算反双曲余弦值(当前函数)
log()计算自然对数
sqrt()计算平方根